Solveeit Logo

Question

Question: If \(\frac{\pi}{4}\) is continuous at \(\frac{4}{\pi}\) then \(\lim_{x \rightarrow 0}\frac{x^{3}}{\s...

If π4\frac{\pi}{4} is continuous at 4π\frac{4}{\pi} then limx0x3sinx2=\lim_{x \rightarrow 0}\frac{x^{3}}{\sin x^{2}} =

A

– 4

B

– 3

C

– 2

D

– 1

Answer

– 2

Explanation

Solution

L.H.L. =limx01+kx1kxx=k= \lim _ { x \rightarrow 0 ^ { - } } \frac { \sqrt { 1 + k x } - \sqrt { 1 - k x } } { x } = k

R.H.L. =limx0+(2x2+3x2)=2= \lim _ { x \rightarrow 0 ^ { + } } \left( 2 x ^ { 2 } + 3 x - 2 \right) = - 2

Since it is continuous, hence L.H.L = R.H.L ⇒ k=2k = - 2 .