Solveeit Logo

Question

Question: If \(\frac{nP_{r - 1}}{a} = \frac{nP_{r}}{b} = \frac{nP_{r + 1}}{c}\) then...

If nPr1a=nPrb=nPr+1c\frac{nP_{r - 1}}{a} = \frac{nP_{r}}{b} = \frac{nP_{r + 1}}{c} then

A

ab, b, ac are in A.P.

B

ab, b, ac are in G.P.

C

b2 = a(b + c)

D

None of these

Answer

b2 = a(b + c)

Explanation

Solution

nPr1a=nPrb=nPr+1c\frac{nP_{r - 1}}{a} = \frac{nP_{r}}{b} = \frac{nP_{r + 1}}{c}

1a.n!(nr+1)!=1b.n!(nr)!=1cn!(nr1)!\frac{1}{a}.\frac{n!}{(n - r + 1)!} = \frac{1}{b}.\frac{n!}{(n - r)!} = \frac{1}{c}\frac{n!}{(n - r - 1)!}from first two

ba\frac{b}{a} = n – r + 1

From last two cb\frac{c}{b} = n – r

ba=cb+1=b+cb\frac{b}{a} = \frac{c}{b} + 1 = \frac{b + c}{b}

b2 = ab + ac