Question
Question: If $\frac{log x}{b-c}=\frac{log y}{c-a}=\frac{log z}{a-b}$, then which of the following is true...
If b−clogx=c−alogy=a−blogz, then which of the following is true

A
xyz=2
B
xaybzc = 1/2
C
xb+cyc+aza+b = 1
Answer
$x^{b+c}y^{c+a}z^{a+b}=1
Explanation
Solution
Given:
b−clogx=c−alogy=a−blogz=k.Thus:
logx=k(b−c),logy=k(c−a),logz=k(a−b).Exponentiating:
x=ek(b−c),y=ek(c−a),z=ek(a−b).We need to evaluate:
xb+cyc+aza+b.Taking natural logarithm,
ln(xb+cyc+aza+b)=(b+c)lnx+(c+a)lny+(a+b)lnz.Substitute the values:
=(b+c)k(b−c)+(c+a)k(c−a)+(a+b)k(a−b).Note that:
(b+c)(b−c)=b2−c2,(c+a)(c−a)=c2−a2,(a+b)(a−b)=a2−b2.Thus,
ln(xb+cyc+aza+b)=k[(b2−c2)+(c2−a2)+(a2−b2)]=k⋅0=0.Therefore,
xb+cyc+aza+b=e0=1.