Solveeit Logo

Question

Question: If \(\frac{\log 5 + \log(x^{2} + 1)}{\log(x - 2)} = 2\) and \(x = \sqrt{7 + 4\sqrt{3}},\) are roots ...

If log5+log(x2+1)log(x2)=2\frac{\log 5 + \log(x^{2} + 1)}{\log(x - 2)} = 2 and x=7+43,x = \sqrt{7 + 4\sqrt{3}}, are roots of x+1x=x + \frac{1}{x} =, then

log2x+logx2=103=log2y+logy2\log_{2}x + \log_{x}2 = \frac{10}{3} = \log_{2}y + \log_{y}2is equal to.

A

xy,x \neq y,

B

x+y=x + y =

C

x=2+2+2+.....x = \sqrt{2 + \sqrt{2 + \sqrt{2 + .....}}}

D

4x3x6mu6mu12=3x+1222x14^{x} - 3^{x\mspace{6mu} - \mspace{6mu}\frac{1}{2}} = 3^{x + \frac{1}{2}} - 2^{2x - 1}

Answer

x=2+2+2+.....x = \sqrt{2 + \sqrt{2 + \sqrt{2 + .....}}}

Explanation

Solution

Given equation is xx.

So α,β\alpha,\betaand x2+(3λ)xλ=0.x^{2} + (3 - \lambda)x - \lambda = 0.

Now λ\lambda.