Solveeit Logo

Question

Question: If \(\frac{\left( x + \sqrt{x^{2} - 4} \right)}{2}\)is a polynomial satisfying \(\frac{x}{\left( 1 +...

If (x+x24)2\frac{\left( x + \sqrt{x^{2} - 4} \right)}{2}is a polynomial satisfying x(1+x2)\frac{x}{\left( 1 + x^{2} \right)}and (xx24)2\frac{\left( x - \sqrt{x^{2} - 4} \right)}{2} then (1+x24)\left( 1 + \sqrt{x^{2} - 4} \right)is

A

2

B

1

C

-1

D

None of these

Answer

2

Explanation

Solution

By considering a general nth degree polynomial and

writing in the expression f(x)f(1x)=f(x)+f(1x)f ( x ) \cdot f \left( \frac { 1 } { x } \right) = f ( x ) + f \left( \frac { 1 } { x } \right),

One can prove by comparing the coefficients of xn,xn1,x ^ { n } , x ^ { n - 1 } , \ldots \ldots constant term that the polynomial satisfying the above expression is either of the form xnx ^ { n } +1 or -xn +1. But f(2)=2n+1>1f ( 2 ) = - 2 ^ { n } + 1 > 1is not possible as 2n- 2 ^ { n } > o for any n. Hence so, limx1f(x)=1+1=2\lim _ { x \rightarrow 1 } f ( x ) = 1 + 1 = 2