Solveeit Logo

Question

Question: If \(\frac{d}{dx}f(x) = x\cos x + \sin x\) and \(f(0) = 2,\) then \(f(x) =\)...

If ddxf(x)=xcosx+sinx\frac{d}{dx}f(x) = x\cos x + \sin x and f(0)=2,f(0) = 2, then f(x)=f(x) =

A

xsinxx\sin x

B

xcosx+sinx+2x\cos x + \sin x + 2

C

xsinx+2x\sin x + 2

D

xcosx+2x\cos x + 2

Answer

xsinx+2x\sin x + 2

Explanation

Solution

ddxf(x)=xcosx+sinxf(x)=(xcosx+sinx)dx=xsinx+c\frac{d}{dx}f(x) = x\cos x + \sin x \Rightarrow f(x) = \int_{}^{}{(x\cos x + \sin x)dx} = x\sin x + cSince f(0)=2f(0) = 2

c=2\Rightarrow c = 2, f(x)=xsinx+2\therefore f(x) = x\sin x + 2