Question
Question: If \(\frac{d}{dx}\)f(x) = x cosx + sinx and f(0) = 2, then f(x) =...
If dxdf(x) = x cosx + sinx and f(0) = 2, then f(x) =
A
x sin x
B
x cosx + sinx + 2
C
x sinx + 2
D
x cosx + 2
Answer
x sinx + 2
Explanation
Solution
Integrating both sides :
∫dxd f(x) =∫xcosxdx+∫sinxdx
f(x) = x∫cosxdx–∫(1.∫cosxdx) dx + ∫sinxdx
f(x) = x sinx – ∫sinxdx + ∫sinxdx
f(x) = x sin x + c Ž f(0) + 2
2 = 0 + c Ž \ c = 2 Ž \ f(x) = x sin x + 2