Solveeit Logo

Question

Question: If \(\frac{d}{dx}\)f(x) = x cosx + sinx and f(0) = 2, then f(x) =...

If ddx\frac{d}{dx}f(x) = x cosx + sinx and f(0) = 2, then f(x) =

A

x sin x

B

x cosx + sinx + 2

C

x sinx + 2

D

x cosx + 2

Answer

x sinx + 2

Explanation

Solution

Integrating both sides :

ddx\int \frac { \mathrm { d } } { \mathrm { dx } } f(x) =xcosxdx+sinxdx\int_{}^{}{x\cos xdx + \int_{}^{}{\sin xdx}}

f(x) = xcosxdx\int_{}^{}{\cos xdx}(1.cosxdx)\int_{}^{}\left( 1.\int_{}^{}{\cos xdx} \right) dx + sinxdx\int_{}^{}{\sin xdx}

f(x) = x sinx – sinx\int_{}^{}{\sin x}dx + sinx\int_{}^{}{\sin x}dx

f(x) = x sin x + c Ž f(0) + 2

2 = 0 + c Ž \ c = 2 Ž \ f(x) = x sin x + 2