Solveeit Logo

Question

Question: If \(\frac{\cos x}{\sin ax}\) is a periodic function, then \(\operatorname { Lim } _ { m \rightarr...

If cosxsinax\frac{\cos x}{\sin ax} is a periodic function, then

Limm\operatorname { Lim } _ { m \rightarrow \infty } Limn\underset{n \rightarrow \infty}{Lim} (1 + cos2m n!πa) is equal to –

A

0

B

1

C

2

D

– 1

Answer

2

Explanation

Solution

If cosxsinax\frac { \cos x } { \sin a x } is periodic then a must be rational

A is rational n → ∞ 

n!πa will become and integral multiple of π  Limn\operatorname { Lim } _ { n \rightarrow \infty }

(1 + cos2m n!πa)

1 + (± 1)2m ⇒ 2