Solveeit Logo

Question

Question: If \(\frac{\cos x}{a} = \frac{\cos(x + \theta)}{b} = \frac{\cos(x + 2\theta)}{c} = \frac{\cos(x + 3\...

If cosxa=cos(x+θ)b=cos(x+2θ)c=cos(x+3θ)d\frac{\cos x}{a} = \frac{\cos(x + \theta)}{b} = \frac{\cos(x + 2\theta)}{c} = \frac{\cos(x + 3\theta)}{d} then a+cb+d\frac{a + c}{b + d}is equal to

A

ad\frac{a}{d}

B

cd\frac{c}{d}

C

bc\frac{b}{c}

D

da\frac{d}{a}

Answer

bc\frac{b}{c}

Explanation

Solution

a+cb+d=cosx+cos(x+2θ)cos(x+θ)+cos(x+3θ)\frac{a + c}{b + d} = \frac{\cos x + \cos(x + 2\theta)}{\cos(x + \theta) + \cos(x + 3\theta)}

= 2cos(x+θ)cosθ2cos(x+2θ)cosθ=bc\frac{2\cos(x + \theta)\cos\theta}{2\cos(x + 2\theta)\cos\theta} = \frac{b}{c}