Solveeit Logo

Question

Question: If \(\frac{\cos A}{\sin B\sin C} + \frac{\cos B}{\sin C\sin A} + \frac{\cos C}{\sin A\sin B} =\)then...

If cosAsinBsinC+cosBsinCsinA+cosCsinAsinB=\frac{\cos A}{\sin B\sin C} + \frac{\cos B}{\sin C\sin A} + \frac{\cos C}{\sin A\sin B} =then 32sin(A2)sin(5A2)=32\sin\left( \frac{A}{2} \right)\sin\left( \frac{5A}{2} \right) =

A

7

B

8

C

11

D

None of these

Answer

11

Explanation

Solution

32sinA2sin5A2=16(cos2Acos3A)32\sin\frac{A}{2}\sin\frac{5A}{2} = 16(\cos 2A - \cos 3A)

=16(2cos2A14cos3A+3cosA)= 16(2\cos^{2}A - 1 - 4\cos^{3}A + 3\cos A)

=16(2×91614×2764+3×34)=11= 16\left( 2 \times \frac{9}{16} - 1 - 4 \times \frac{27}{64} + 3 \times \frac{3}{4} \right) = 11.