Solveeit Logo

Question

Question: If \(\frac{\cos A}{\cos B} = \frac{\sin(C - \theta)}{\sin(C + \theta)}\), then \(\tan\theta\)is equa...

If cosAcosB=sin(Cθ)sin(C+θ)\frac{\cos A}{\cos B} = \frac{\sin(C - \theta)}{\sin(C + \theta)}, then tanθ\tan\thetais equals

A

tan(A+B)2tan(AB)2tanC2\tan\frac{(A + B)}{2}\tan\frac{(A - B)}{2}\tan\frac{C}{2}

B

tan(A+B)2tan(AB)2tanC\tan\frac{(A + B)}{2}\tan\frac{(A - B)}{2}\tan C

C

tan(A+B)2tan(AB)2sinC2\tan\frac{(A + B)}{2}\tan\frac{(A - B)}{2}\sin\frac{C}{2}

D

tan(A+B)2tan(AB)2cosC2\tan\frac{(A + B)}{2}\tan\frac{(A - B)}{2}\cos\frac{C}{2}

Answer

tan(A+B)2tan(AB)2tanC\tan\frac{(A + B)}{2}\tan\frac{(A - B)}{2}\tan C

Explanation

Solution

cosAcosB=sin(Cθ)sin(C+θ)\frac{\cos A}{\cos B} = \frac{\sin(C - \theta)}{\sin(C + \theta)}

cosAcosBcosA+cosB=sin(Cθ)sin(C+θ)sin(Cθ)+sin(C+θ)\frac{\cos A - \cos B}{\cos A + \cos B} = \frac{\sin(C - \theta) - \sin(C + \theta)}{\sin(C - \theta) + \sin(C + \theta)}

tanA+B2tanAB2=cotCtanθ\tan\frac{A + B}{2}\tan\frac{A - B}{2} = \cot C\tan\theta

tanθ=tanA+B2tanAB2tanC\tan\theta = \tan\frac{A + B}{2}\tan\frac{A - B}{2}\tan C