Solveeit Logo

Question

Question: If \(\frac{ax - 1}{(1 - x + x^{2})(2 + x)} = \frac{x}{1 - x + x^{2}} - \frac{1}{2 + x}\), then \(a =...

If ax1(1x+x2)(2+x)=x1x+x212+x\frac{ax - 1}{(1 - x + x^{2})(2 + x)} = \frac{x}{1 - x + x^{2}} - \frac{1}{2 + x}, then a=a =

A

2

B

3

C

4

D

5

Answer

3

Explanation

Solution

ax1=x(2+x)(1x+x2)=3x1ax - 1 = x(2 + x) - (1 - x + x^{2}) = 3x - 1

a=3\therefore a = 3