Question
Question: If $\frac{a+\log_4 3}{a+\log_2 3}=\frac{a+\log_8 3}{a+\log_4 3}=b$, then b is equal to...
If a+log23a+log43=a+log43a+log83=b, then b is equal to

Answer
b = 1/3
Explanation
Solution
We are given
a+log23a+log43=a+log43a+log83=b.-
Express the logarithms in terms of log23 (let L=log23):
- log43=2L because log43=log24log23=2L.
- log83=3L because log83=log28log23=3L.
-
Substitute into the fractions:
a+La+2L=b⟹a+2L=b(a+L)⟹a(1−b)=L(b−21).(1) a+2La+3L=b⟹a+3L=b(a+2L)⟹a(1−b)=L(2b−31).(2) -
Equate the expressions for a(1−b) from (1) and (2):
L(b−21)=L(2b−31).Cancel L (since L=0):
b−21=2b−31. -
Multiply the entire equation by 6 to eliminate fractions:
6b−3=3b−2.Solve for b:
6b−3b=−2+3⟹3b=1⟹b=31.
Therefore, b=31.