Solveeit Logo

Question

Question: If $\frac{a+\log_4 3}{a+\log_2 3}=\frac{a+\log_8 3}{a+\log_4 3}=b$, then b is equal to...

If a+log43a+log23=a+log83a+log43=b\frac{a+\log_4 3}{a+\log_2 3}=\frac{a+\log_8 3}{a+\log_4 3}=b, then b is equal to

Answer

b = 1/3

Explanation

Solution

We are given

a+log43a+log23=a+log83a+log43=b.\frac{a+\log_4 3}{a+\log_2 3}=\frac{a+\log_8 3}{a+\log_4 3}=b.
  1. Express the logarithms in terms of log23\log_2 3 (let L=log23L=\log_2 3):

    • log43=L2\log_4 3=\frac{L}{2} because log43=log23log24=L2\log_4 3=\frac{\log_2 3}{\log_2 4}=\frac{L}{2}.
    • log83=L3\log_8 3=\frac{L}{3} because log83=log23log28=L3\log_8 3=\frac{\log_2 3}{\log_2 8}=\frac{L}{3}.
  2. Substitute into the fractions:

    a+L2a+L=ba+L2=b(a+L)a(1b)=L(b12).(1)\frac{a+\frac{L}{2}}{a+L}=b \quad \Longrightarrow \quad a+\frac{L}{2}=b(a+L) \quad \Longrightarrow \quad a(1-b)=L\left(b-\frac{1}{2}\right).\tag{1} a+L3a+L2=ba+L3=b(a+L2)a(1b)=L(b213).(2)\frac{a+\frac{L}{3}}{a+\frac{L}{2}}=b \quad \Longrightarrow \quad a+\frac{L}{3}=b\left(a+\frac{L}{2}\right) \quad \Longrightarrow \quad a(1-b)=L\left(\frac{b}{2}-\frac{1}{3}\right).\tag{2}
  3. Equate the expressions for a(1b)a(1-b) from (1) and (2):

    L(b12)=L(b213).L\left(b-\frac{1}{2}\right)=L\left(\frac{b}{2}-\frac{1}{3}\right).

    Cancel LL (since L0L \neq 0):

    b12=b213.b-\frac{1}{2}=\frac{b}{2}-\frac{1}{3}.
  4. Multiply the entire equation by 6 to eliminate fractions:

    6b3=3b2.6b-3=3b-2.

    Solve for bb:

    6b3b=2+33b=1b=13.6b-3b= -2+3 \quad \Longrightarrow \quad 3b=1 \quad \Longrightarrow \quad b=\frac{1}{3}.

Therefore, b=13b=\frac{1}{3}.