Solveeit Logo

Question

Question: If $\frac{3}{2 + \cos \theta + i \sin \theta} = a + ib$, then prove that $a^2 + b^2 = 4a - 3$....

If 32+cosθ+isinθ=a+ib\frac{3}{2 + \cos \theta + i \sin \theta} = a + ib, then prove that a2+b2=4a3a^2 + b^2 = 4a - 3.

Answer

a^2 + b^2 = 4a - 3

Explanation

Solution

The problem asks us to prove a relationship between aa, bb, and θ\theta given a complex number equation.

Let the given equation be: 32+cosθ+isinθ=a+ib\frac{3}{2 + \cos \theta + i \sin \theta} = a + ib Let z=cosθ+isinθz = \cos \theta + i \sin \theta. We know that zz is a complex number on the unit circle, so its modulus z=cos2θ+sin2θ=1|z| = \sqrt{\cos^2 \theta + \sin^2 \theta} = 1. An important property for complex numbers on the unit circle is that zˉ=1z\bar{z} = \frac{1}{z}.

The given equation can be written as: a+ib=32+za + ib = \frac{3}{2 + z}

We need to prove a2+b2=4a3a^2 + b^2 = 4a - 3.

Step 1: Express a2+b2a^2 + b^2 in terms of θ\theta. We know that a2+b2=a+ib2a^2 + b^2 = |a + ib|^2. a2+b2=32+z2=322+z2=92+z2a^2 + b^2 = \left| \frac{3}{2 + z} \right|^2 = \frac{|3|^2}{|2 + z|^2} = \frac{9}{|2 + z|^2} Now, let's find 2+z2|2 + z|^2. For any complex number ww, w2=wwˉ|w|^2 = w \bar{w}. 2+z2=(2+z)(2+zˉ)|2 + z|^2 = (2 + z)(2 + \bar{z}) Since z=1|z|=1, we have zˉ=1z\bar{z} = \frac{1}{z}. Substitute this into the expression: 2+z2=(2+z)(2+1z)=4+2z+2z+1=5+2(z+1z)|2 + z|^2 = (2 + z)\left(2 + \frac{1}{z}\right) = 4 + \frac{2}{z} + 2z + 1 = 5 + 2\left(z + \frac{1}{z}\right) Now substitute z=cosθ+isinθz = \cos \theta + i \sin \theta and 1z=cosθisinθ\frac{1}{z} = \cos \theta - i \sin \theta: z+1z=(cosθ+isinθ)+(cosθisinθ)=2cosθz + \frac{1}{z} = (\cos \theta + i \sin \theta) + (\cos \theta - i \sin \theta) = 2 \cos \theta So, 2+z2=5+2(2cosθ)=5+4cosθ|2 + z|^2 = 5 + 2(2 \cos \theta) = 5 + 4 \cos \theta Therefore, a2+b2=95+4cosθ(1)a^2 + b^2 = \frac{9}{5 + 4 \cos \theta} \quad \cdots (1)

Step 2: Express aa in terms of θ\theta. From a+ib=32+za + ib = \frac{3}{2 + z}, we can find aa by taking the real part: a=Re(32+z)a = \text{Re}\left( \frac{3}{2 + z} \right) To find the real part, we multiply the numerator and denominator by the conjugate of the denominator: a=Re(3(2+zˉ)(2+z)(2+zˉ))=Re(3(2+zˉ)2+z2)a = \text{Re}\left( \frac{3(2 + \bar{z})}{(2 + z)(2 + \bar{z})} \right) = \text{Re}\left( \frac{3(2 + \bar{z})}{|2 + z|^2} \right) Substitute 2+z2=5+4cosθ|2 + z|^2 = 5 + 4 \cos \theta and zˉ=cosθisinθ\bar{z} = \cos \theta - i \sin \theta: a=Re(3(2+cosθisinθ)5+4cosθ)a = \text{Re}\left( \frac{3(2 + \cos \theta - i \sin \theta)}{5 + 4 \cos \theta} \right) The real part is: a=3(2+cosθ)5+4cosθa = \frac{3(2 + \cos \theta)}{5 + 4 \cos \theta}

Step 3: Express 4a34a - 3 in terms of θ\theta. Substitute the expression for aa into 4a34a - 3: 4a3=4(3(2+cosθ)5+4cosθ)34a - 3 = 4\left( \frac{3(2 + \cos \theta)}{5 + 4 \cos \theta} \right) - 3 4a3=12(2+cosθ)5+4cosθ34a - 3 = \frac{12(2 + \cos \theta)}{5 + 4 \cos \theta} - 3 To combine these terms, find a common denominator: 4a3=12(2+cosθ)3(5+4cosθ)5+4cosθ4a - 3 = \frac{12(2 + \cos \theta) - 3(5 + 4 \cos \theta)}{5 + 4 \cos \theta} 4a3=24+12cosθ1512cosθ5+4cosθ4a - 3 = \frac{24 + 12 \cos \theta - 15 - 12 \cos \theta}{5 + 4 \cos \theta} 4a3=95+4cosθ(2)4a - 3 = \frac{9}{5 + 4 \cos \theta} \quad \cdots (2)

Step 4: Compare the results. From (1) and (2), we have: a2+b2=95+4cosθa^2 + b^2 = \frac{9}{5 + 4 \cos \theta} 4a3=95+4cosθ4a - 3 = \frac{9}{5 + 4 \cos \theta} Since both expressions are equal to 95+4cosθ\frac{9}{5 + 4 \cos \theta}, we can conclude: a2+b2=4a3a^2 + b^2 = 4a - 3 Hence, the proof is complete.