Solveeit Logo

Question

Question: If \(\frac{2x}{x^{3} - 1} = \frac{A}{x - 1} + \frac{Bx + C}{x^{2} + x + 1}\), then...

If 2xx31=Ax1+Bx+Cx2+x+1\frac{2x}{x^{3} - 1} = \frac{A}{x - 1} + \frac{Bx + C}{x^{2} + x + 1}, then

A

A=B=CA = B = C

B

A=BCA = B \neq C

C

AB=CA \neq B = C

D

ABCA \neq B \neq C

Answer

ABCA \neq B \neq C

Explanation

Solution

2x=A(x2+x+1)+(Bx+C)(x1)2x = A(x^{2} + x + 1) + (Bx + C)(x - 1)

For x=1x = 1, 2=3A2 = 3A \Rightarrow A=23A = \frac{2}{3}

For x=ω,2ω=A(1+ω+ω2)+Bω2+(CB)ωCx = \omega,2\omega = A(1 + \omega + \omega^{2}) + B\omega^{2} + (C - B)\omega - C

\Rightarrow 2ω=A.0+Bω2+(CB)ωC2\omega = A.0 + B\omega^{2} + (C - B)\omega - C

ω=1+3i2,ω2=13i2\omega = \frac{- 1 + \sqrt{3}i}{2},\omega^{2} = \frac{- 1 - \sqrt{3}i}{2}

1+3i=B(1232i)+(CB)(12+32i)C\therefore - 1 + \sqrt{3}i = B\left( - \frac{1}{2} - \frac{\sqrt{3}}{2}i \right) + (C - B)\left( - \frac{1}{2} + \frac{\sqrt{3}}{2}i \right) - C

1+3i=(B2C2+B2C)+i32(C2B)\Rightarrow - 1 + \sqrt{3}i = \left( - \frac{B}{2} - \frac{C}{2} + \frac{B}{2} - C \right) + \frac{i\sqrt{3}}{2}(C - 2B)

1=32C,3=32(C2B)\Rightarrow - 1 = - \frac{3}{2}C,\sqrt{3} = \frac{\sqrt{3}}{2}(C - 2B)

C=23,B=C22=23C = \frac{2}{3},B = \frac{C - 2}{2} = - \frac{2}{3}

A=CB\therefore A = C \neq B \Rightarrow ABCA \neq B \neq C.