Question
Question: If \(\frac{2x}{x^{3} - 1} = \frac{A}{x - 1} + \frac{Bx + C}{x^{2} + x + 1}\), then...
If x3−12x=x−1A+x2+x+1Bx+C, then
A
A=B=C
B
A=B=C
C
A=B=C
D
A=B=C
Answer
A=B=C
Explanation
Solution
2x=A(x2+x+1)+(Bx+C)(x−1)
For x=1, 2=3A ⇒ A=32
For x=ω,2ω=A(1+ω+ω2)+Bω2+(C−B)ω−C
⇒ 2ω=A.0+Bω2+(C−B)ω−C
ω=2−1+3i,ω2=2−1−3i
∴−1+3i=B(−21−23i)+(C−B)(−21+23i)−C
⇒−1+3i=(−2B−2C+2B−C)+2i3(C−2B)
⇒−1=−23C,3=23(C−2B)
C=32,B=2C−2=−32
∴A=C=B ⇒ A=B=C.