Solveeit Logo

Question

Question: If \(\frac{1}{x(x + 1)(x + 2)....(x + n)} = \frac{A_{0}}{x} + \frac{A_{1}}{x + 1} + \frac{A_{2}}{x +...

If 1x(x+1)(x+2)....(x+n)=A0x+A1x+1+A2x+2+....+Anx+n\frac{1}{x(x + 1)(x + 2)....(x + n)} = \frac{A_{0}}{x} + \frac{A_{1}}{x + 1} + \frac{A_{2}}{x + 2} + .... + \frac{A_{n}}{x + n}

then Ar=A_{r} =

A

r!(1)r(nr)!\frac{r!( - 1)^{r}}{(n - r)!}

B

(1)rr!(nr)!\frac{( - 1)^{r}}{r!(n - r)!}

C

1r!(nr)!\frac{1}{r!(n - r)!}

D

None of these

Answer

(1)rr!(nr)!\frac{( - 1)^{r}}{r!(n - r)!}

Explanation

Solution

1=A0(x+1)(x+2)....(x+n)+A1x(x+2)(x+3)...(x+n)1 = A_{0}(x + 1)(x + 2)....(x + n) + A_{1}x(x + 2)(x + 3)...(x + n)

+...+Arx(x+1)(x+2)....(x+r1)(x+r+1)(x+r+2).......(x+n)+ ... + A_{r}x(x + 1)(x + 2)....(x + r - 1)(x + r + 1)(x + r + 2).......(x + n)

Puttingx=rx = - r,

1=Ar(r)(r+1)(r+2),.....(1).1.2....(r+n)1 = A_{r}( - r)( - r + 1)( - r + 2),.....( - 1).1.2....( - r + n)

\Rightarrow 1=Ar.(1)rr!.(nr)!1 = A_{r}.( - 1)^{r}r!.(n - r)!; \therefore Ar=(1)rr!(nr)!A_{r} = \frac{( - 1)^{r}}{r!(n - r)!}.