Question
Question: If \(\frac{1}{x(x + 1)(x + 2)....(x + n)} = \frac{A_{0}}{x} + \frac{A_{1}}{x + 1} + \frac{A_{2}}{x +...
If x(x+1)(x+2)....(x+n)1=xA0+x+1A1+x+2A2+....+x+nAn
then Ar=
A
(n−r)!r!(−1)r
B
r!(n−r)!(−1)r
C
r!(n−r)!1
D
None of these
Answer
r!(n−r)!(−1)r
Explanation
Solution
1=A0(x+1)(x+2)....(x+n)+A1x(x+2)(x+3)...(x+n)
+...+Arx(x+1)(x+2)....(x+r−1)(x+r+1)(x+r+2).......(x+n)
Puttingx=−r,
1=Ar(−r)(−r+1)(−r+2),.....(−1).1.2....(−r+n)
⇒ 1=Ar.(−1)rr!.(n−r)!; ∴ Ar=r!(n−r)!(−1)r.