Solveeit Logo

Question

Question: If \(\frac{1}{\sqrt{2}}\)\< x \< 1 then cos<sup>–1</sup>x+cos<sup>–1</sup>\(\left( \frac{x + \sqrt{1...

If 12\frac{1}{\sqrt{2}}< x < 1 then cos–1x+cos–1(x+1x22)\left( \frac{x + \sqrt{1 - x^{2}}}{\sqrt{2}} \right)is equal to –

A

2 cos–1x –π4\frac{\pi}{4}

B

2 cos–1x

C

π4\frac{\pi}{4}

D

0

Answer

π4\frac{\pi}{4}

Explanation

Solution

Here, the expression could be written as

̃ cos–1x +cos–1 {x.12+1x2.1(12)2}\left\{ x.\frac{1}{\sqrt{2}} + \sqrt{1 - x^{2}}.\sqrt{1 - \left( \frac{1}{\sqrt{2}} \right)^{2}} \right\}

̃ cos–1 x + cos–1 12\frac{1}{\sqrt{2}}– cos–1x

{12<xcos112>cos1x}\left\{ \because\frac{1}{\sqrt{2}} < x \Rightarrow \cos^{- 1}\frac{1}{\sqrt{2}} > \cos^{- 1}x \right\}

̃ cos–112\frac{1}{\sqrt{2}}=π4\frac{\pi}{4}