Solveeit Logo

Question

Question: If \(\frac{1 + iz}{1 - iz} =\) is a complex number such that \(\frac{a + ib}{1 + c}\) then....

If 1+iz1iz=\frac{1 + iz}{1 - iz} = is a complex number such that a+ib1+c\frac{a + ib}{1 + c} then.

A

bic1+a\frac{b - ic}{1 + a}is purely real

B

a+ic1+b\frac{a + ic}{1 + b}is purely imaginary

C

Either z1,z2z_{1},z_{2}is purely real or purely imaginary

D

None of these

Answer

Either z1,z2z_{1},z_{2}is purely real or purely imaginary

Explanation

Solution

Let z1=1x+iyz^{- 1} = \frac{1}{x + iy}, then its conjugate (z1)=x+iyx2+y2(\overline{z^{- 1}}) = \frac{x + iy}{x^{2} + y^{2}}

Given that \therefore

(z1)zˉ=x+iyx2+y2(xiy)=1(\overline{z^{- 1}})\bar{z} = \frac{x + iy}{x^{2} + y^{2}}(x - iy) = 1z=x+iyz = x + iy

If z=xiy\overline{z} = x - iy then z2=(z)2z^{2} = (\overline{z})^{2}and if x2y2+2ixy=x2y22ixyx^{2} - y^{2} + 2ixy = x^{2} - y^{2} - 2ixythen 4ixy=04ixy = 0