Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

If zαz+α(αR)\frac{z-\alpha}{z+\alpha} \left(\alpha\in R\right) is a purely imaginary number and z=2|z| = 2, then a value of α\alpha is :

A

11

B

22

C

2\sqrt{2}

D

12\frac{1}{2}

Answer

22

Explanation

Solution

zαz+α+zˉαzˉ+α=0\frac{z-\alpha}{z+\alpha} + \frac{\bar{z} -\alpha}{\bar{z} +\alpha} = 0
zzˉ+zααzˉα2+zzˉzα+zˉαα2=0z\bar{z}+z\alpha -\alpha\bar{z} -\alpha^{2} +z\bar{ z } - z\alpha + \bar{z} \alpha-\alpha^{2} = 0
z2=α2,a=±2\left|z\right|^{2} = \alpha^{2} , a = \pm2