Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

If z1z+1\frac{z-1}{z+1} is purely imaginary, then

A

z=12\left|z\right|=\frac{1}{2}

B

z=1\left|z\right|=1

C

z=2\left|z\right|=2

D

z=3\left|z\right|=3

Answer

z=1\left|z\right|=1

Explanation

Solution

Let ω=z1z+1\omega=\frac{z-1}{z+1}
Then, using componendo and dividendo, we get
z=1+ω1ωz=\frac{1+\omega}{1-\omega}
z=ω+1ω1\Rightarrow |z|=\left|\frac{\omega+1}{\omega-1}\right|
Put z=1|z|=1
ω+1=ω1\Rightarrow |\omega+1|=|\omega-1| ...(i)
Let ω=u+iv\omega=u +i v
Then, ω+1=u+iv+1|\omega+1|=|u +i v+1|
=(u+1)+iv=(u+1)2+v2=|(u+1)+i v|=\sqrt{(u+1)^{2}+v^{2}}
and ω1=(u1)2+v2|\omega-1|=\sqrt{(u-1)^{2}+v^{2}}
\therefore From E (i)
(u+1)2+v2=(u1)2+v2\sqrt{(u+1)^{2}+v^{2}} =\sqrt{(u-1)^{2}+v^{2}}
(u+1)2+v2=(v1)2+v2\Rightarrow (u+1)^{2}+v^{2} =(v-1)^{2}+v^{2}
u=0\Rightarrow u=0
ω=z1z+1\therefore \omega=\frac{z-1}{z+1} is a pure imaginary number.