Question
Mathematics Question on Complex Numbers and Quadratic Equations
If z+1z−1 is purely imaginary, then
A
∣z∣=21
B
∣z∣=1
C
∣z∣=2
D
∣z∣=3
Answer
∣z∣=1
Explanation
Solution
Let ω=z+1z−1
Then, using componendo and dividendo, we get
z=1−ω1+ω
⇒∣z∣=ω−1ω+1
Put ∣z∣=1
⇒∣ω+1∣=∣ω−1∣ ...(i)
Let ω=u+iv
Then, ∣ω+1∣=∣u+iv+1∣
=∣(u+1)+iv∣=(u+1)2+v2
and ∣ω−1∣=(u−1)2+v2
∴ From E (i)
(u+1)2+v2=(u−1)2+v2
⇒(u+1)2+v2=(v−1)2+v2
⇒u=0
∴ω=z+1z−1 is a pure imaginary number.