Solveeit Logo

Question

Mathematics Question on Integration by Partial Fractions

If x4(x1)(x2)(x3)=x+k+Ax1+Bx2+Cx3\frac{x^{4}}{\left(x-1\right)\left(x-2\right)\left(x-3\right)} =x + k+ \frac{A}{x-1}+\frac{B}{x-2} + \frac{C}{x-3} , then k+AB+C=k + A - B + C =

A

104104

B

5252

C

6363

D

1272\frac{127}{2}

Answer

6363

Explanation

Solution

Given,
x4(x1)(x2)(x3)\frac{x^{4}}{(x-1)(x-2)(x-3)}
=x+k+Ax1+Bx2+Cx3=x+k+\frac{A}{x-1}+\frac{B}{x-2}+\frac{C}{x-3}
x4=x(x1)(x2)(x3)+k(x1)\Rightarrow x^{4}=x(x-1)(x-2)(x-3)+k(x-1)
(x2)(x3)+A(x2)(x3)+B(x3)(x-2)(x-3)+A(x-2) (x-3)+B(x-3)
(x1)+C(x1)(x2)(x-1)+C(x-1)(x-2)
on putting x=1x=1, we get
A=12A=\frac{1}{2}
on putting x=2x=2, we get
B=161=16B=\frac{16}{-1}=-16
on putting x=3x=3, we get
C=812C=\frac{81}{2}
on putting x=0x=0, we get
0=k(1)(2)(3)+12(2)(3)160=k(-1)(-2)(-3)+\frac{1}{2}(-2)(-3)-16
(3)(1)+812(1)(2)(-3)(-1)+\frac{81}{2}(-1)(-2)
6k=348+81=36\Rightarrow 6 k=3-48+81=36
k=6\Rightarrow k=6
k+AB+C=6+12+16+812\therefore k+A-B+C=6+\frac{1}{2}+16+\frac{81}{2}
=6+16+41=63=6+16+41=63