Solveeit Logo

Question

Mathematics Question on Integration by Partial Fractions

If x4+24x2+28(x2+1)3=A(x2+1)+B(x2+1)2+C(x2+1)3\frac{x^{4} + 24 x^{2} + 28}{\left(x^{2} + 1\right)^{3}} = \frac{A }{\left(x^{2} + 1\right)} + \frac{B}{\left(x^{2} + 1\right)^{2}} + \frac{C}{\left(x^{2} + 1\right)^{3}} then A+C=A + C =

A

12

B

10

C

9

D

6

Answer

6

Explanation

Solution

If x4+24x2+28(x2+1)3=Ax2+1+B(x2+1)2\frac{x^{4}+24 x^{2}+28}{\left(x^{2}+1\right)^{3}}=\frac{A}{x^{2}+1}+\frac{B}{\left(x^{2}+1\right)^{2}}
+C(x2+1)3+\frac{C}{\left(x^{2}+1\right)^{3}}
x4+24x2+28=A(x2+1)2+B(x2+1)+C\Rightarrow x^{4}+24 x^{2}+28=A\left(x^{2}+1\right)^{2}+B\left(x^{2}+1\right)+C
On comparing the coefficient of different terms
A=1;2A+B=24A=1;\, 2 A+B=24 and A+B+C=28A+B+C=28
A=1,B=22\Rightarrow A=1,\, B=22, so A+C=6A+C=6