Solveeit Logo

Question

Mathematics Question on linear inequalities

If x3x3\frac{|x-3|}{x-3} > 0 , then

A

x(3,)x \in (-3 , \infty)

B

x(3,)x \in (3 , \infty)

C

x(2,)x \in (2 , \infty)

D

x(1,)x \in (1 , \infty)

Answer

x(3,)x \in (3 , \infty)

Explanation

Solution

We have,
x3x3>0\frac{|x-3|}{x-3}>0
Now, x3x3={x3x3=1,x3 (x3)x3=1,x<3\frac{|x-3|}{x-3}=\begin{cases} \frac{x-3}{x-3}=1, & x \geq 3 \\\ \frac{-(x-3)}{x-3}=-1, & x<3 \end{cases}
x3x3>0\therefore \frac{|x-3|}{x-3}>0 only holds when x(3,)x \in(3, \infty)