Solveeit Logo

Question

Mathematics Question on Relations and functions

If (x3+1,y23)=(53,13)(\frac {x}{3}+1, \frac {y-2}{3}) = (\frac {5}{3}, \frac {1}{3}), Find the value of x and y.

Answer

It is given that (x3+1,y23)=(53,13)(\frac {x}{3}+1, \frac {y-2}{3}) = (\frac {5}{3}, \frac {1}{3}).

Since the ordered pairs are equal, the corresponding elements will also be equal.

(x3+1,y23)=(53,13)(\frac {x}{3}+1, \frac {y-2}{3}) = (\frac {5}{3}, \frac {1}{3})

Therefore,

x3+1=53\frac {x}{3}+1=\frac {5}{3}

x3=531,y23=13\frac{x}{3} = \frac{5}{3} -1,\frac{y-2}{3} = \frac{1}{3}

x3=23,y=13+23\frac{x}{3} = \frac{2}{3}, y = \frac{1}{3}+\frac{2}{3}

⇒ x=2, y=1