Question
Mathematics Question on Derivatives of Functions in Parametric Forms
If a2x2+b2y2=1, then dx2d2y=
A
a2y3−b4
B
ay2b2
C
a2y3−b3
D
a2y2b3
Answer
a2y3−b4
Explanation
Solution
We have,
a2x2+b2y2=1
Letx=acosθ,y=bsinθ
∴dθdx=−asinθ,dθdy=bcosθ
dxdy=−abcotθ
On differentiating w.r.t. θ, we get
dx2d2y=−ab(−cosec2θ)dxdθ
⇒dx2d2y=−a2sinθbcosec2θ
⇒dx2d2y=−a2sin3θb
⇒dxd2y=a2y3−b4[∵sinθ=by]