Question
Mathematics Question on Application of derivatives
If a2x2+b2y2=1(a>b) and x2−y2=c2 cut at right angles, then
A
a2+b2=2c2
B
b2−a2=2c2
C
a2−b2=2c2
D
a2b2=2c2
Answer
a2−b2=2c2
Explanation
Solution
a2x2+b2y2=1 ...(i)
On differentiating w.r.t. x, we get
a22x+b22y.dxdy=0
⇒dxdy=−a2yxb2 and x2−y2=c2
On differentiating w.r.t. x, we get
2x−2ydxdy=0
⇒dxdy=yx
The two curves will cut at right angles, if
(dxdy)c1×(dxdy)c2=−1
⇒−a2yb2x.yx=−1
⇒a2x2=b2y2
⇒a2x2=b2y2=21 [using e (i)]
On substituting these values in x2−y2=c2, we get
2a2−2b2=c2
⇒a2−b2=2c2