Solveeit Logo

Question

Mathematics Question on Application of derivatives

If x2a2+y2b2=1(a>b)\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1 \left(a > b\right) and x2y2=c2x^{2} - y^{2} = c^{2} cut at right angles, then

A

a2+b2=2c2a^2 + b^2 = 2c^2

B

b2a2=2c2 b^2 - a^2 = 2c^2

C

a2b2=2c2a^2 - b^2 = 2c^2

D

a2b2=2c2a^2 b^2 = 2c^2

Answer

a2b2=2c2a^2 - b^2 = 2c^2

Explanation

Solution

x2a2+y2b2=1\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1 ...(i)
On differentiating w.r.t. xx, we get
2xa2+2yb2.dydx=0\frac{2x}{a^{2}} + \frac{2y}{b^{2}}. \frac{dy}{dx} = 0
dydx=xb2a2y\Rightarrow \frac{dy}{dx} = - \frac{xb^{2}}{a^{2}y} and x2y2=c2 x^{2} - y^{2} = c^{2}
On differentiating w.r.t. xx, we get
2x2ydydx=02x - 2y \frac{dy}{dx} = 0
dydx=xy\Rightarrow \frac{dy}{dx} = \frac{x}{y}
The two curves will cut at right angles, if
(dydx)c1×(dydx)c2=1\left(\frac{dy}{dx}\right)_{c_1} \times\left(\frac{dy}{dx}\right)_{c_2} = - 1
b2xa2y.xy=1\Rightarrow - \frac{b^{2}x}{a^{2}y} . \frac{x}{y} = - 1
x2a2=y2b2\Rightarrow \frac{x^{2}}{a^{2}} = \frac{y^{2}}{b^{2}}
x2a2=y2b2=12\Rightarrow \frac{x^{2}}{a^{2}} = \frac{y^{2}}{b^{2}} = \frac{1}{2} [using e (i)]
On substituting these values in x2y2=c2x^{2} - y^{2} = c^{2}, we get
a22b22=c2\frac{a^{2}}{2} - \frac{b^{2}}{2} = c^{2}
a2b2=2c2\Rightarrow a^{2} - b^{2} = 2c^{2}