Solveeit Logo

Question

Mathematics Question on Integration by Partial Fractions

If x2+5(x2+1)(x2)=Ax2+Bx+Cx2+1,\frac{x^{2} + 5}{\left(x^{2} + 1 \right)\left(x-2\right)} = \frac{A}{x-2} + \frac{Bx+C}{x^{2} + 1 } , then A+B+C=A + B + C =

A

-1

B

25\frac{2}{5}

C

35\frac{-3}{5}

D

0

Answer

35\frac{-3}{5}

Explanation

Solution

We have,
x2+5(x2+1)(x2)=Ax2+Bx+Cx2+1\frac{x^{2}+5}{\left(x^{2}+1\right)(x-2)}=\frac{A}{x-2}+\frac{B x+C}{x^{2}+1}
x2+5=A(x2+1)+(Bx+C)(x2)\Rightarrow x^{2}+5=A\left(x^{2}+1\right)+(B x+C)(x-2)
x2+5=Ax2+A+Bx22Bx+Cx2C\Rightarrow x^{2}+5=A\, x^{2}+A+B \,x^{2}-2 \,B x+C x-2 C
Equating the coefficient of x2,xx^{2}, x and constant
terms, we get
41=A+B,0=2B+C,5=A2C41=A+B, 0=-2 B+C, 5=A-2 \,C
Solving these equations, we get
A=95,B=45,C=85A=\frac{9}{5}, B=-\frac{4}{5}, C=-\frac{8}{5}
A+B+C=9485\therefore A+B+C= \frac{9-4-8}{5}
=35= \frac{-3}{5}