Question
Mathematics Question on Integration by Partial Fractions
If (x2+1)(x−2)x2+5=x−2A+x2+1Bx+C, then A+B+C=
A
-1
B
52
C
5−3
D
0
Answer
5−3
Explanation
Solution
We have,
(x2+1)(x−2)x2+5=x−2A+x2+1Bx+C
⇒x2+5=A(x2+1)+(Bx+C)(x−2)
⇒x2+5=Ax2+A+Bx2−2Bx+Cx−2C
Equating the coefficient of x2,x and constant
terms, we get
41=A+B,0=−2B+C,5=A−2C
Solving these equations, we get
A=59,B=−54,C=−58
∴A+B+C=59−4−8
=5−3