Solveeit Logo

Question

Mathematics Question on Conic sections

If x236y2k2=1\frac {x^2}{36}-\frac{y^2} {k^2} = 1 is a hyperbola, then which of the following statements can be true ?

A

(3, 1) lies on the hyperbola

B

(-3, 1) lies on the hyperbola

C

(5, 2) lies on the hyperbola

D

(10, 4) lies on the hyperbola

Answer

(10, 4) lies on the hyperbola

Explanation

Solution

Given, x236y2k2=1\frac{x^{2}}{36} - \frac{y^{2}}{k^{2}} = 1
y2k2=x2361\Rightarrow \frac{y^{2}}{k^{2}} = \frac{x^{2}}{36} -1
k2=36y2x236\Rightarrow k^{2} = \frac{36 y^{2}}{x^{2} -36}
k2>0k^{2} >\,0
If x236>0x^{2} - 36 > \,0
x2>36\Rightarrow x^{2} >\, 36
This is true only for point (10,4)(10, 4) So, (10,4)(10, 4) lies on the hyperbola