Question
Mathematics Question on applications of integrals
if ∫(x+1)2(x2+1)exdx=ƒ(x)ex+C where C is a constant, then dx3d3ƒ at x=1 is equal to :
A
−43
B
43
C
−23
D
23
Answer
43
Explanation
Solution
I=∫(x+1)2(x2+1)exdx=ƒ(x)ex+C
I=∫(x+1)2ex(x2−1+1+1)dx
= ∫ex[x+1x−1+(x+1)22]dx
= ex(x+1x−1)+c
∴f(x)=x+1x−1
f(x)=x+11−2
f′(x)=2(x+11)2
f′′(x)=−4(x+11)3
f′′′(x)=(x+1)412
for x=1
f′′′(1)=2412
= 1612
= 43
Hence, the correct option is (B): 43