Question
Mathematics Question on Inverse Trigonometric Functions
If x3+x(x+1)2=xA+x2+1Bx+C, then sin−1A+tan−1B+sec−1C is equal to
A
2π
B
6π
C
0
D
65π
Answer
65π
Explanation
Solution
Given,
x3+x(x+1)2=xA+x2+1Bx+C...(i)
⇒(x+1)2=A(x2+1)+(Bx+c)(x)
x2+1+2x=Ax2+A+Bx2+Cx
=(A+B)x2+Cx+A
On comparing the coefficient of like powers on both sides, we get
A+B=1...(ii)
and C=2,A=1
From E (ii), B=0
Then, sin−1A+tan−1B+sec−1C
=sin−1(1)+tan−1(0)+sec−1(2)
=sin−1sin2π+tan−1tan0+sec−1sec3π
=2π+0+3π=65π