Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

If sinAsinB=m\frac{sin\,A}{sin\,B}=m and cosAcosB=n\frac{cos\,A}{cos\,B}=n then find the value of tanBtan \,B; n2<1<m2n^2 < 1 < m^2.

A

n2n^2

B

±1n2m21\pm \sqrt{\frac{1-n^{2}}{m^{2}-1}}

C

n2/(m21)n^{2}/\left(m^{2}-1\right)

D

m2m^2

Answer

±1n2m21\pm \sqrt{\frac{1-n^{2}}{m^{2}-1}}

Explanation

Solution

Given, sinAsinB=m\frac{sin\,A}{sin\,B}=m sinA=msinB(i)\Rightarrow sin\,A=m\,sinB\quad\ldots\left(i\right) and cosAcosB=n\frac{cos\,A}{cos\,B}=n cosA=ncosB(ii)\Rightarrow cosA=ncosB\quad\ldots\left(ii\right) Squaring (i)\left(i\right) and (ii)\left(ii\right) and then adding, we get 1=m2sin2B+n2cos2B1=m^{2}\,sin^{2}\,B+n^{2}\,cos^{2}\,B 1cos2B=m2sin2Bcos2B+n2\Rightarrow \frac{1}{cos^{2}\,B}=m^{2}\, \frac{sin^{2}\,B}{cos^{2}\,B}+n^{2} (Dividing by cos2Bcos^2B) sec2B=m2tan2B+n2\Rightarrow sec^{2}B=m^{2}\,tan^{2}\,B+n^{2} 1+tan2B=m2tan2B+n2\Rightarrow 1+tan^{2}\,B=m^2\,tan^2\,B+n^{2} tan2B=1n2m21\Rightarrow tan^{2}B=\frac{1-n^{2}}{m^{2}-1} tanB=±1n2m21\Rightarrow tanB=\pm\sqrt{\frac{1-n^{2}}{m^{2}-1}}.