Question
Mathematics Question on Trigonometric Functions
If sinBsinA=m and cosBcosA=n then find the value of tanB; n2<1<m2.
A
n2
B
±m2−11−n2
C
n2/(m2−1)
D
m2
Answer
±m2−11−n2
Explanation
Solution
Given, sinBsinA=m ⇒sinA=msinB…(i) and cosBcosA=n ⇒cosA=ncosB…(ii) Squaring (i) and (ii) and then adding, we get 1=m2sin2B+n2cos2B ⇒cos2B1=m2cos2Bsin2B+n2 (Dividing by cos2B) ⇒sec2B=m2tan2B+n2 ⇒1+tan2B=m2tan2B+n2 ⇒tan2B=m2−11−n2 ⇒tanB=±m2−11−n2.