Solveeit Logo

Question

Mathematics Question on permutations and combinations

If n+2C6n2P2=11\frac{^{n+2}C_6}{^{n-2}P_2} = 11, then nn satisfies the equation :

A

n2+3n108=0n^2 + 3n - 108 =0

B

n2+5n84=0n^2 + 5n - 84 =0

C

n2+2n80=0n^2 + 2n - 80 =0

D

n2+n110=0n^2 + n - 110 =0

Answer

n2+3n108=0n^2 + 3n - 108 =0

Explanation

Solution

n+2C6n2P2=11\frac{{ }^{ n +2} C _{6}}{ n -2 P _{2}} =11
(n+2)!6!(n4)!=11.(n2)!(n4)!\Rightarrow \frac{( n +2) !}{6 !( n -4) !}=11 .\frac{( n -2) !}{( n -4) !}
(n+2)!=11.6!(n2)!\Rightarrow ( n +2) !=11 . 6 !( n -2) !
(n+2)(n+1)n(n1)=11.6!\Rightarrow ( n +2)( n +1) n ( n -1)=11.6 !
(n+2)(n+1)n(n1)=11.10.9.8\Rightarrow ( n +2)( n +1) n ( n -1)=11.10 .9 .8
n+2=11\Rightarrow n +2=11
n=9\Rightarrow n =9
Which satifies the n2+3n108=0n^{2}+3 n-108=0