Solveeit Logo

Question

Question: If \(\frac { \mathrm { x } } { l }\) + ![](https://cdn.pureessence.tech/canvas_80.png?top_left_x=1...

If xl\frac { \mathrm { x } } { l } + = 1 be any line passing through the intersection point of the lines = 1 and = 1 then-

A

1a+1 m=1 b+1l\frac { 1 } { \mathrm { a } } + \frac { 1 } { \mathrm {~m} } = \frac { 1 } { \mathrm {~b} } + \frac { 1 } { l }

B

C

1l+1 m=1a+1 b\frac { 1 } { l } + \frac { 1 } { \mathrm {~m} } = \frac { 1 } { \mathrm { a } } + \frac { 1 } { \mathrm {~b} }

D

None of these

Answer

1l+1 m=1a+1 b\frac { 1 } { l } + \frac { 1 } { \mathrm {~m} } = \frac { 1 } { \mathrm { a } } + \frac { 1 } { \mathrm {~b} }

Explanation

Solution

Equation of any line through the intersection point of the given lines must be of the type

(xa+yb1)\left( \frac { \mathrm { x } } { \mathrm { a } } + \frac { \mathrm { y } } { \mathrm { b } } - 1 \right) + l (xb+ya1)\left( \frac { \mathrm { x } } { \mathrm { b } } + \frac { \mathrm { y } } { \mathrm { a } } - 1 \right) = 0

i.e. x (1a+λb)\left( \frac { 1 } { a } + \frac { \lambda } { b } \right) + y (1b+λa)\left( \frac { 1 } { b } + \frac { \lambda } { a } \right) – (1 + l) = 0

Comparing it with the given equation, we have

1l\frac { 1 } { l } = 11+λ\frac { 1 } { 1 + \lambda } … (1)

and … (2)

Thus, we haveabm\frac { \mathrm { ab } } { \mathrm { m } } =

Adding, we have ab (1l+1 m)\left( \frac { 1 } { l } + \frac { 1 } { \mathrm {~m} } \right) =

i.e. 1l+1 m=1a+1 b\frac { 1 } { l } + \frac { 1 } { \mathrm {~m} } = \frac { 1 } { \mathrm { a } } + \frac { 1 } { \mathrm {~b} }.