Solveeit Logo

Question

Question: If \(\frac { \mathrm { b } + \mathrm { c } - \mathrm { a } } { \mathrm { a } } , \frac { \mathrm { ...

If b+caa,c+abb,a+bcc\frac { \mathrm { b } + \mathrm { c } - \mathrm { a } } { \mathrm { a } } , \frac { \mathrm { c } + \mathrm { a } - \mathrm { b } } { \mathrm { b } } , \frac { \mathrm { a } + \mathrm { b } - \mathrm { c } } { \mathrm { c } } are in A.P. then which of the following is in A.P.-

A

a, b, c

B

a2, b2, c2

C
D

None

Answer
Explanation

Solution

,, a+bcc+2\frac { a + b - c } { c } + 2 are in A.P.

a+b+ca,a+b+cb,a+b+cc\frac { \mathrm { a } + \mathrm { b } + \mathrm { c } } { \mathrm { a } } , \frac { \mathrm { a } + \mathrm { b } + \mathrm { c } } { \mathrm { b } } , \frac { \mathrm { a } + \mathrm { b } + \mathrm { c } } { \mathrm { c } } are in AP.

Dividing by a + b + c

1a,1 b,1c\frac { 1 } { \mathrm { a } } , \frac { 1 } { \mathrm {~b} } , \frac { 1 } { \mathrm { c } } are in AP.