Solveeit Logo

Question

Mathematics Question on Differential equations

If Logxbc=Logyca=Logzab\frac {Log\,x}{b-c} = \frac {Log\,y}{c-a}=\frac {Log \,z}{a-b} then the value of xb+c.yc+a.za+bx^{b+c} . y^{c+a}.z^{a+b} is

A

1

B

2

C

0

D

-1

Answer

1

Explanation

Solution

Given, logxbc=logyca=logzab=k\frac{\log x}{b-c}=\frac{\log y}{c-a}=\frac{\log z}{a-b}=k (say) (i)\dots(i) x=ek(bc),y=ek(ca),z=ek(ab)\Rightarrow x=e^{k(b-c)}, y=e^{k(c-a)}, z=e^{k(a-b)} Now, xb+cyc+aza+bx^{b +c} \cdot y^{c +a} \cdot z^{a +b} =ek(bc)(b+c)ek(c+a)(ca)ek(a+b)(ab)=e^{k(b-c)(b +c)} \cdot e^{k(c +a)(c-a)} \cdot e^{k(a+ b)(a-b)} =ek(b2c2)ek(c2a2)ek(a2b2)=e^{k\left(b^{2}-c^{2}\right)} \cdot e^{k\left(c^{2}-a^{2}\right)} \cdot e^{k\left(a^{2}-b^{2}\right)} =ek(b2c2+c2a2+a2b2)=ek0=1=e^{k\left(b^{2}-c^{2}+c^{2}-a^{2}+a^{2}-b^{2}\right)}=e^{k \cdot 0}=1