Solveeit Logo

Question

Mathematics Question on Application of derivatives

If dydx+2xy(2y1)2x1=0,x,y>0,y(1)=1\frac{dy}{dx} + \frac{2x-y(2^y-1)}{2x-1} = 0, x,y > 0,y(1) = 1, then y(2)y(2) is equal to:

A

2+log2  32 + log_2\; 3

B

2+log3  22 + log_3 \;2

C

2log3  22 – log_3 \;2

D

2log2  32 – log_2 \;3

Answer

2log2  32 – log_2 \;3

Explanation

Solution

dydx+2xy(2y1)2x1=0,x,y>0,y(1)=1\frac{dy}{dx} + \frac{2x-y(2^y-1)}{2x-1} = 0, x,y > 0,y(1) = 1

dydx=2x(2y1)2x1\frac{dy}{dx} = - \frac{2x(2y-1)}{2x-1}

2y2y1dy=2x2x1dx∫ \frac{2y}{2y-1}dy = - ∫\frac{2x}{2x-1}dx

= loge(2y1)loge2=loge(2x1)loge2+logecloge2\frac{\log_e(2y-1)}{\log_{e^2}} = - \frac{\log_e(2^x-1)}{\log_{e^2}}+\frac{\log_{e^c}}{\log_{e^2}}

= I(2y1)(2x)=cI(2^y-1)(2x-)|=c

y(1)=1∴ y(1)=1

c=1∴ c = 1

= (2y1)(2x1)=1|(2^y-1)(2^x-1)| = 1

As x=2x = 2

(2y1)3=1|(2^y-1)^3| = 1

2y1=132^y-1 = \frac{1}{3}

2y=43⇒ 2y = \frac{4}{3}

Taking log to base 2.

y=2log23∴ y = 2 – \log_2 3

Hence, the correct option is (D): 2log2  32 – log_2 \;3