Question
Mathematics Question on Application of derivatives
If dxdy+2x−12x−y(2y−1)=0,x,y>0,y(1)=1, then y(2) is equal to:
A
2+log23
B
2+log32
C
2–log32
D
2–log23
Answer
2–log23
Explanation
Solution
dxdy+2x−12x−y(2y−1)=0,x,y>0,y(1)=1
dxdy=−2x−12x(2y−1)
∫2y−12ydy=−∫2x−12xdx
= loge2loge(2y−1)=−loge2loge(2x−1)+loge2logec
= I(2y−1)(2x−)∣=c
∴y(1)=1
∴c=1
= ∣(2y−1)(2x−1)∣=1
As x=2
∣(2y−1)3∣=1
2y−1=31
⇒2y=34
Taking log to base 2.
∴y=2–log23
Hence, the correct option is (D): 2–log23