Question
Mathematics Question on Differential equations
If
dxdy+2ytanx=sinx,0<x<2πand y(3π)=0
then the maximum value of y(x) is:
A
81
B
43
C
41
D
83
Answer
81
Explanation
Solution
dxdy+2ytanx=sinx
which is a first order linear differential equation.
Integrating factor (I.F.)=e∫2tanxdx
=e2In∣secx∣=sec2=x
Solution of differential equation can be written as
y⋅sec2x=∫sinx⋅sec2xdx=∫secx⋅tanxdx
ysec2x=secx+C
y(3π)=0,0=sec3π+C
⇒C=−2
y=sec2xsecx−2
y=cosx−2cos2x
=81−2(cosx−41)2
ymax=81
So, the correct option is (A): 81