Solveeit Logo

Question

Mathematics Question on Differential equations

If dxdy=1+xy2y,x(1)=1,\frac{dx}{dy} = \frac{1 + x - y^2}{y}, \quad x(1) = 1,then 5x(2)5x(2) is equal to:

Answer

Given the differential equation:
dxdy=1+xy2y\frac{dx}{dy} = \frac{1 + x - y^2}{y}
with the initial condition:
x(1)=1x(1) = 1

Step 1: Rearranging the Equation
Rearranging the differential equation:
ydxdy=1+xy2y \frac{dx}{dy} = 1 + x - y^2
Rewriting:
dxdyxy=1y2y\frac{dx}{dy} - \frac{x}{y} = \frac{1 - y^2}{y}
This is a linear first-order differential equation in the form:
dxdy+P(y)x=Q(y)\frac{dx}{dy} + P(y)x = Q(y)
where:
P(y)=1y,Q(y)=1y2yP(y) = -\frac{1}{y}, \quad Q(y) = \frac{1 - y^2}{y}

Step 2: Finding the Integrating Factor
The integrating factor (IF) is given by:
IF=eP(y)dy=e1ydy=elny=1y\text{IF} = e^{\int P(y) \, dy} = e^{\int -\frac{1}{y} \, dy} = e^{-\ln |y|} = \frac{1}{y}

Step 3: Multiplying by the Integrating Factor
Multiplying the entire equation by the integrating factor:
1ydxdyxy2=1y2y2\frac{1}{y} \frac{dx}{dy} - \frac{x}{y^2} = \frac{1 - y^2}{y^2}
This simplifies to:
ddy(xy)=1y2y2\frac{d}{dy} \left( \frac{x}{y} \right) = \frac{1 - y^2}{y^2}

Step 4: Integrating Both Sides
Integrating both sides with respect to yy:
xy=1y2y2dy=(1y21)dy\frac{x}{y} = \int \frac{1 - y^2}{y^2} \, dy = \int \left( \frac{1}{y^2} - 1 \right) \, dy
xy=y2dy1dy=y1y+C\frac{x}{y} = \int y^{-2} \, dy - \int 1 \, dy = -y^{-1} - y + C
Multiplying by yy:
x=1y2+Cyx = -1 - y^2 + Cy

Step 5: Applying the Initial Condition
Given x(1)=1x(1) = 1:
1=112+C×11 = -1 - 1^2 + C \times 1
C=3C = 3
Thus, the solution is:
x=1y2+3yx = -1 - y^2 + 3y

Step 6: Evaluating 5x(2)5x(2)
Substituting y=2y = 2:
x(2)=122+3×2=14+6=1x(2) = -1 - 2^2 + 3 \times 2 = -1 - 4 + 6 = 1
5x(2)=5×1=55x(2) = 5 \times 1 = 5
Conclusion: 5x(2)=55x(2) = 5.