Solveeit Logo

Question

Mathematics Question on Definite Integral

If ddx(ϕ(x))=f(x)\frac{ d }{ dx }(\phi( x ))= f ( x ), then 12f(x)\int\limits_{1}^{2} f ( x ) is equal to:

A

f(1)f(2)f(1) - f(2)

B

ϕ(1)ϕ(2)\phi (1) - \phi (2)

C

f(2)f(1)f(2) - f(1)

D

ϕ(2)ϕ(1)\phi (2) - \phi (1)

Answer

ϕ(2)ϕ(1)\phi (2) - \phi (1)

Explanation

Solution

12f(x)dx=12ddx(ϕ(x))dx\int\limits_{1}^{2} f ( x ) d x =\int\limits_{1}^{2} \frac{ d }{ dx }(\phi( x )) dx
12f(x)dx\int\limits_{1}^{2} f ( x ) d x =[ϕ(x)]12=[\phi( x )]_{1}^{2}

\int\limits_{1}^{2} f ( x ) d x$$=\phi(2)-\phi(1)

So,the correct answer is (D): ϕ(2)− ϕ(1)