Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

If \frac{d}{dx} \left\\{f\left(x\right)\right\\} = g\left(x\right), then ab\int\limits^{b}_{a} f(x)g(x)dxf (x)g(x)dx is equal to

A

12[f2(b)f2(a)]\frac{1}{2}\left[f^{2}\left(b\right)-f^{2}\left(a\right)\right]

B

12[g2(b)g2(a)]\frac{1}{2}\left[g^{2}\left(b\right)-g^{2}\left(a\right)\right]

C

f(b)f(a)f(b) - f(a)

D

12[f(b2)f(a2)]\frac{1}{2}\left[f\left(b^{2}\right)-f\left(a^{2}\right)\right]

Answer

12[f2(b)f2(a)]\frac{1}{2}\left[f^{2}\left(b\right)-f^{2}\left(a\right)\right]

Explanation

Solution

f(x)=g(x)dxf(x)=\int g(x) d x
abf(x)g(x)dx=(f(x)f(x))ababg(x)f(x)dx\int\limits_{a}^{b} f(x) g(x) d x=(f(x) \cdot f(x))_{a}^{b}-\int\limits_{a}^{b} g(x) \cdot f(x) d x
I=f2(b)f2(a)I=f^{2}(b)-f^{2}(a)
I=12(f2(b)f2(a))I=\frac{1}{2}\left(f^{2}(b)-f^{2}(a)\right)