Solveeit Logo

Question

Mathematics Question on integral

If ddxG(x)=etanxx,x(0,π/2),\frac{d}{dx}G\left(x\right) = \frac{e^{tan\,x}}{x},x\in\left(0, \pi/2\right), then 1/41/22x.etan(πx2)dx\int\limits^{1/2}_{1/4} \frac{2}{x}. e^{tan\left(\pi\,x^2\right)}dx is equal to

A

G(π/4)G(π/16) G\left(\pi/4\right)-G\left(\pi/16\right)

B

2[G(π/4)G(π/16)]2\left[G\left(\pi/4\right)-G\left(\pi/16\right)\right]

C

π[G(1/2)G(1/4)]\pi\left[G\left(1/2\right)-G\left(1/4\right)\right]

D

G(1/2)G(1/2)G\left(1/\sqrt{2}\right)-G\left(1/2\right)

Answer

G(π/4)G(π/16) G\left(\pi/4\right)-G\left(\pi/16\right)

Explanation

Solution

Let ddxG(x)=etanxx,x(0,π2)\frac{d}{dx}G\left(x\right) = \frac{e^{tan\,x}}{x}, x\in\left(0, \frac{\pi}{2}\right) Now, I=1/41/22xetan(πx2).dx1/41/22ππx2etan(πx2).dxI = \int\limits^{1/2}_{1/4} \frac{2}{x} e^{tan\left(\pi\,x^2\right)}.dx \int\limits^{1/2}_{1/4} \frac{2\pi}{\pi x^{2}} e^{tan\left(\pi \,x^2\right)}.dx Let πx2=t2πxdx=dt\pi x^{2} = t \Rightarrow 2\pi x \,dx = dt When x=12,t=π4x = \frac{1}{2}, t = \frac{\pi}{4} and x=14,t=π16x = \frac{1}{4}, t = \frac{\pi }{16} I=π/16π/4etanttdt=g(t)π4 π16I = \int\limits^{\pi/4}_{\pi/16} \frac{e^{tan\,t}}{t}dt = g\left(t\right) |\begin{matrix}\frac{\pi}{4}\\\ \frac{\pi}{16}\end{matrix} =G(π4)G(π16)= G \left(\frac{\pi }{4}\right)-G \left(\frac{\pi }{16}\right)