Question
Mathematics Question on integral
If dxdG(x)=xetanx,x∈(0,π/2), then 1/4∫1/2x2.etan(πx2)dx is equal to
A
G(π/4)−G(π/16)
B
2[G(π/4)−G(π/16)]
C
π[G(1/2)−G(1/4)]
D
G(1/2)−G(1/2)
Answer
G(π/4)−G(π/16)
Explanation
Solution
Let dxdG(x)=xetanx,x∈(0,2π) Now, I=1/4∫1/2x2etan(πx2).dx1/4∫1/2πx22πetan(πx2).dx Let πx2=t⇒2πxdx=dt When x=21,t=4π and x=41,t=16π I=π/16∫π/4tetantdt=g(t)∣4π 16π =G(4π)−G(16π)