Question
Mathematics Question on Sequences and Series
If a−bxa+bx=b−cxb+cx=c−dxc+dx(x=0), then show that a, b, c and d are in G.P.
Answer
It is given that,
a−bxa+bx=b−cxb+cx=c−dxc+dx
⇒(a+bx)(b−cx)=(b+cx)(a−bx)
⇒ab−acx+b2x−bcx2=ab−b2x+acx−bcx2
⇒2b2x=2acx
⇒b2=ac
⇒ab=bc...(1)
Also, b−cxb+cx=c−dxc+dx
⇒(b+cx)(c−dx)=(b−cx)(c+dx)
⇒bc−bdx+c2x−cdx2=bc+bdx−c2x−cdx2
⇒2c2x=2bdx
⇒c2=bd
⇒dc=cd...(2)
From (1) and (2), we obtain
ab=bc=cd
Thus, a, b, c, and d are in G.P.