Solveeit Logo

Question

Mathematics Question on Sequences and Series

If a+bxabx=b+cxbcx=c+dxcdx(x0),\frac{ a + bx }{ a - bx }= \frac{b + cx }{ b - cx} =\frac{ c + dx }{ c - dx }(x ≠ 0), then show that a, b, c and d are in G.P.

Answer

It is given that,
a+bxabx=b+cxbcx=c+dxcdx\frac{ a + bx }{ a - bx }= \frac{b + cx }{ b - cx} =\frac{ c + dx }{ c - dx }
(a+bx)(bcx)=(b+cx)(abx)⇒(a + bx)(b - cx) = (b + cx)(a - bx)
abacx+b2xbcx2=abb2x+acxbcx2⇒ab - acx + b^2x - bcx^2 = ab - b^2x + acx - bcx^2
2b2x=2acx⇒2b^2x = 2acx
b2=ac⇒ b^2 = ac
ba=cb...(1)⇒ \frac{b }{ a} =\frac{ c }{ b} ...(1)
Also, b+cxbcx=c+dxcdx\frac{ b + cx }{ b - cx }= \frac{c + dx }{ c - dx}
(b+cx)(cdx)=(bcx)(c+dx)⇒ (b + cx)(c - dx) = (b - cx)(c + dx)
bcbdx+c2xcdx2=bc+bdxc2xcdx2⇒ bc - bdx + c^2x - cdx^2 = bc + bdx - c^2x - cdx^2
2c2x=2bdx⇒ 2c^2x = 2bdx
c2=bd⇒ c^2 = bd
cd=dc...(2)⇒ \frac{c }{ d} = \frac{d }{c} ...(2)
From (1) and (2), we obtain
ba=cb=dc\frac{b }{ a} =\frac{ c }{ b} =\frac{ d }{ c}
Thus, a, b, c, and d are in G.P.