Solveeit Logo

Question

Mathematics Question on Sequence and series

If 5+9+13+.....nterms7+9+11+.......(n+1)terms=1716\frac{5+9+13+.....n \, terms}{7+9+11+.......(n+1)terms}=\frac{17}{16} ,then n is equal to

A

7

B

12

C

8

D

none of these.

Answer

7

Explanation

Solution

5+9+13+.....n terms7+9+11+......(n+1)terms\frac{5+9+13+.....n{\text{ terms}}}{7+9+11+......\left(n+1\right) {\text{terms}}} n2[2×5+(n1)4]n+12[2×7+(n+11)2]=1716\Rightarrow \frac{\frac{n}{2}\left[2\times5+\left(n-1\right)4\right]}{\frac{n+1}{2}\left[2\times7+\left(n+1-1\right)2\right]} = \frac{17}{16} n[4n+6](n+1)(2n+14)=1716\Rightarrow \frac{n\left[4n+6\right]}{\left(n+1\right)\left(2n+14\right) } = \frac{17}{16} n(2n+3)(n+1)(n+7)=1716\Rightarrow \frac{n\left(2n+3\right)}{\left(n+1\right)\left(n+7\right)} = \frac{17}{16} 2n2+3nn2+8n+7=1716\Rightarrow \frac{2n^{2}+3n}{n^{2}+8n+7} = \frac{17}{16} 32n2+48n=17n2+136n+119\Rightarrow 32n^{2}+48n = 17n^{2}+136n+119 15n288n119=0 \Rightarrow 15n^{2}-88n -119 = 0 (n7)(15n+17)=0\Rightarrow \left(n-7\right)\left(15n+17\right) = 0 n=7 \Rightarrow n=7