Solveeit Logo

Question

Mathematics Question on linear inequalities

If 3x42x+141\frac{3x - 4}{2} \ge \frac{x + 1}{4} - 1, then xx\in

A

[1[1, )\infty)

B

(1(1, )\infty)

C

(5(-5, 5)5)

D

[5[-5, 5]5]

Answer

[1[1, )\infty)

Explanation

Solution

We have 3x42x+141\frac{3x - 4}{2} \ge \frac{x + 1}{4} - 1 or, 3x42x34\frac{3x - 4}{2} \ge \frac{x -3}{4} or, 2(3x4)(x3)2\left(3x - 4\right) \ge\left(x -3 \right) or, 6x8x36x - 8 \ge x - 3 or, 5x55x \ge 5 or x1x \ge 1 Thus all real numbers which are greater than or equal to 11 is the solution set of the given inequality x[1\therefore\quad x \in [1, )\infty)