Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

If 3x+1(x1)(x+3)=Ax1+Bx+3sin1AB\frac {3x+1}{(x-1)(x+3)} =\frac {A}{x-1} + \frac {B} {x+3} \sin^{-1} \frac {A}{B} = is equal to

A

π2\frac {\pi}{2}

B

π3\frac {\pi}{3}

C

π6\frac {\pi}{6}

D

π4\frac {\pi}{4}

Answer

π6\frac {\pi}{6}

Explanation

Solution

Given, 3x+1(x1)(x+3)=Ax1+Bx+3\frac{3x+1}{\left(x-1\right)\left(x+3\right)}=\frac{A}{x-1}+\frac{B}{x+3}
3x+1=A(x+3)+B(x1)\Rightarrow 3x + 1 = A \left(x + 3\right) + B \left(x - 1\right)
3x+1=(A+B)x+(3AB)\Rightarrow 3x + 1 = \left(A + B\right) x + \left(3A - B\right)
On equating the coefficient of x from both sides, we get
A+B=3(i)A+B=3 \,\,\,\,\dots(i)
and 3AB=1(ii)3A-B =1\,\,\,\,\dots(ii)
On adding Eqs. (i) and (ii), we get
4A=4A=14A =4 \Rightarrow A=1
\therefore From E (i), we get
B=3A=31=2B=3-A=3-1=2
sin1AB=sin1(12)=π6\therefore sin^{-1} \frac{A}{B} = sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6}