Solveeit Logo

Question

Mathematics Question on permutations and combinations

If 29!+23!7!+15!5!=2ab!\frac{2}{9!} + \frac{2}{3! \,7!}+\frac{1}{5! \,5!} =\frac{2^{a}}{b!} where a,bNa,b \in \, N then theordered pair (a,b)(a, b) is

A

(10, 9)

B

(10, 7)

C

(9, 10)

D

(5, 10)

Answer

(9, 10)

Explanation

Solution

29!+23!7!+15!5!=2ab!\frac{2}{9!} + \frac{2}{3! \,7!}+\frac{1}{5! \,5!} =\frac{2^{a}}{b!}
17![29×8+26+7×65!]=2ab!\Rightarrow \frac{1}{7!} \left[\frac{2}{9 \times8}+\frac{2}{6}+\frac{7\times 6}{5!}\right]=\frac{2^{a}}{b!}
17![128180]=17![279×20]\Rightarrow \frac{1}{7!}\left[\frac{128}{180}\right]=\frac{1}{7!}\left[\frac{2^{7}}{9\times 20}\right]
=277!×9×10×2=2610×9×7!=\frac{2^{7}}{7! \times 9\times 10\times 2}=\frac{2^{6}}{10\times 9\times 7!}
=26×2310×9×7!×23= \frac{2^{6}\times 2^{3}}{10\times 9\times 7!\times 2^{3}}
=2910×9×8×7!=2910!=2ab!=\frac{2^{9}}{10\times 9\times 8\times 7!}=\frac{2^{9}}{10!}=\frac{2^{a}}{b!}
Hence order pair (a,b)=(9,10)(a, b) = (9,10)