Solveeit Logo

Question

Mathematics Question on Binomial theorem

If 11C12+11C23++11C910=nm\frac{{^{11}C_1}}{2} + \frac{{^{11}C_2}}{3} + \ldots + \frac{{^{11}C_9}}{10} = \frac{n}{m} with gcd(n,m)=1\gcd(n, m) = 1, then n+mn + m is equal to:

Answer

Step 1: Rewrite the Sum in Terms of a Series

The sum can be expressed as:

r=19(11Cr)(11Cr+1)\sum_{r=1}^{9} \left( ^{11}C_r \right) \cdot \left( ^{11}C_{r+1} \right)

Step 2: Simplify the Series Using Combinatorial Identities

This can be simplified by recognizing a pattern and using properties of binomial coefficients:

=112r=19(12Cr+1)= \frac{1}{12} \sum_{r=1}^{9} \left( ^{12}C_{r+1} \right)

Further simplifying, we get:

=112[21226]=20356= \frac{1}{12} \left[2^{12} - 26\right] = \frac{2035}{6}

Step 3: Determine nn and mm

From the simplified result, n=2035n = 2035 and m=6m = 6, with gcd(n,m)=1\gcd(n, m) = 1.

Step 4: Calculate n+mn + m

n+m=2035+6=2041n + m = 2035 + 6 = 2041

So, the correct answer is: 2041