Question
Mathematics Question on integral
If ∫x1 √1+x1−x _dx = _g(x)+c,g(1)=0 , then g (21)
is equal to
A
log_e(\frac{√3-1}{√3+1})$$+\frac{π}{3}
B
log_e(\frac{√3+1}{√3-1})$$+\frac{π}{3}
C
log_e(\frac{√3+1}{√3-1})$$-\frac{π}{3}
D
\frac{1}{2}log_e(\frac{√3-1}{√3+1})-$$\frac{π}{6}
Answer
log_e(\frac{√3-1}{√3+1})$$+\frac{π}{3}
Explanation
Solution
The correct answer is (A) : log_e(\frac{√3-1}{√3+1})$$+\frac{π}{3}
∵ ∫x1 √1+x1−x dx=g(x)+c
∫121x11+x1−xdx=g(21)−g(1)
∴g(21)= ∫121x11+x1−xdx
cotx=cos2θ
= ∫06πcos2θ1.cosθsinθ(sinθ/cosθ(−2sin2θ)dθ
= −∫06πcos2θ4sin2θdθ
= 2\int_0^{\frac{π}{6}}$$\frac{(1 - 2sin²θ -1)}{cos2θ }$$dθ
= 2 \int^{\frac{π}{6}}_0 $$( 1 - sec2θ ) dθ
=3π - 2. \frac{1}{2} $$[ In | sec2θ + tan2θ| ]^{\frac{π}{6}}_0
= 3π −[In∣2+√3∣−In1]
= 3π +In(21+√3)
= 3π +In∣√3+1√3−1∣