Solveeit Logo

Question

Mathematics Question on integral

If 1x∫\frac{1}{x} 1x1+x√{\frac{1-x}{1+x}} _dx = _g(x)+c,g(1)=0g(x) + c,g(1) = 0 , then g (12)(\frac{1}{2})
is equal to

A

log_e(\frac{√3-1}{√3+1})$$+\frac{π}{3}

B

log_e(\frac{√3+1}{√3-1})$$+\frac{π}{3}

C

log_e(\frac{√3+1}{√3-1})$$-\frac{π}{3}

D

\frac{1}{2}log_e(\frac{√3-1}{√3+1})-$$\frac{π}{6}

Answer

log_e(\frac{√3-1}{√3+1})$$+\frac{π}{3}

Explanation

Solution

The correct answer is (A) : log_e(\frac{√3-1}{√3+1})$$+\frac{π}{3}

1x∫\frac{1}{x} 1x1+x√{\frac{1-x}{1+x}} dx=g(x)+cdx = g(x) + c
1121x1x1+xdx=g(12)g(1)\int_1^{\frac{1}{2}}\frac{1}{x} \sqrt{\frac{1-x}{1+x}} \,dx = g\left(\frac{1}{2}\right) - g(1)
g(12)= g(\frac{1}{2}) = 1121x1x1+xdx\int_1^{\frac{1}{2}}\frac{1}{x} \sqrt{\frac{1-x}{1+x}} \,dx
cotx=cos2θcotx=cos2θ
= 0π61cos2θ.sinθcosθ(sinθ/cosθ(2sin2θ)dθ\int_0^{\frac{π}{6}} \frac{1}{cos2θ}.\frac{sinθ}{cosθ}(sinθ/cosθ ( -2sin2θ)dθ
= 0π64sin2θcos2θdθ-\int_0^{\frac{π}{6}}\frac{4sin²θ}{cos2θ}dθ
= 2\int_0^{\frac{π}{6}}$$\frac{(1 - 2sin²θ -1)}{cos2θ }$$dθ
= 2 \int^{\frac{π}{6}}_0 $$( 1 - sec2θ ) dθ
=π3 \frac{π}{3} - 2. \frac{1}{2} $$[ In | sec2θ + tan2θ| ]^{\frac{π}{6}}_0
= π3 \frac{π}{3} [In2+3In1]- [ In | 2 + √3 | - In1 ]
= π3 \frac{π}{3} +In(12+3)+ In ( \frac{1}{2 }+ √3 )
= π3 \frac{π}{3} +In313+1+ In | \frac{√3 - 1}{√3 + 1} |