Question
Mathematics Question on Complex Numbers and Quadratic Equations
If α1 and β1 are the roots of the equation, ax2+bx+1=0(a=0,a,b∈R), then the equation, x(x+b3)+(a3?3abx) = 0 has roots :
A
α3/2 and β3/2
B
αβ1/2 and α1/2β
C
αβ and αβ
D
α−23 and β−23
Answer
α3/2 and β3/2
Explanation
Solution
α1+β1=−abalsoαβ1=a1
⇒α+β=−b
now x(x+b3)+a3−3abx
=x2+(b3−3ab)x+a3
=x2+b(b2−3a)x+a3
=x^{2}-\left(\sqrt{\alpha }+\sqrt{\beta }\right)\left\\{\alpha+\beta+2\sqrt{\alpha\beta }-3\sqrt{\alpha \beta }\right\\}x+\alpha\beta \sqrt{\alpha\beta }
=x2−(αα+ββ)+αβαβ
⇒ roots are αα and ββ