Solveeit Logo

Question

Mathematics Question on Sequence and series

If 11+2+12+3++199+100=m\frac{1}{\sqrt{1} + \sqrt{2}} + \frac{1}{\sqrt{2} + \sqrt{3}} + \dots + \frac{1}{\sqrt{99} + \sqrt{100}} = m and 112+123++199100=n,\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{99 \cdot 100} = n, then the point (m,n)(m, n) lies on the line

A

11(x – 1) – 100(y – 2) = 0

B

11(x – 2) – 100(y – 1) = 0

C

11(x – 1) – 100y = 0

D

11x – 100y = 0

Answer

11x – 100y = 0

Explanation

Solution

For mm:

11+2+12+3++199+100=m\frac{1}{\sqrt{1} + \sqrt{2}} + \frac{1}{\sqrt{2} + \sqrt{3}} + \cdots + \frac{1}{\sqrt{99} + \sqrt{100}} = m

Rationalize each term:

121+231++991001=m\frac{\sqrt{1} - \sqrt{2}}{-1} + \frac{\sqrt{2} - \sqrt{3}}{-1} + \cdots + \frac{\sqrt{99} - \sqrt{100}}{-1} = m

This telescopes to:

1001=m    m=9\sqrt{100} - 1 = m \implies m = 9

For nn:

112+123++199100=n\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \cdots + \frac{1}{99 \cdot 100} = n

Rewrite as:

(112)+(1213)++(1991100)=n\left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \cdots + \left(\frac{1}{99} - \frac{1}{100}\right) = n

This telescopes to:

11100=n    n=991001 - \frac{1}{100} = n \implies n = \frac{99}{100}

Thus, (m,n)=(9,99100)(m, n) = (9, \frac{99}{100}).

Substitute into the equation:

11(9)100(99100)=9999=011(9) - 100\left(\frac{99}{100}\right) = 99 - 99 = 0

Correct Ans. option (4) 11x100y=011x - 100y = 0