Question
Mathematics Question on Sequence and series
If 1+21+2+31+⋯+99+1001=m and 1⋅21+2⋅31+⋯+99⋅1001=n, then the point (m,n) lies on the line
A
11(x – 1) – 100(y – 2) = 0
B
11(x – 2) – 100(y – 1) = 0
C
11(x – 1) – 100y = 0
D
11x – 100y = 0
Answer
11x – 100y = 0
Explanation
Solution
For m:
1+21+2+31+⋯+99+1001=m
Rationalize each term:
−11−2+−12−3+⋯+−199−100=m
This telescopes to:
100−1=m⟹m=9
For n:
1⋅21+2⋅31+⋯+99⋅1001=n
Rewrite as:
(1−21)+(21−31)+⋯+(991−1001)=n
This telescopes to:
1−1001=n⟹n=10099
Thus, (m,n)=(9,10099).
Substitute into the equation:
11(9)−100(10099)=99−99=0
Correct Ans. option (4) 11x−100y=0